Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Inflammopharmacology ; 31(3): 1029-1052, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2303530

ABSTRACT

According to recent researches, people with diabetes mellitus (type 1 and 2) have a higher incidence of coronavirus disease 2019 (COVID-19), which is caused by a SARS-CoV-2 infection. In this regard, COVID-19 may make diabetic patients more sensitive to hyperglycemia by modifying the immunological and inflammatory responses and increasing reactive oxygen species (ROS) predisposing the patients to severe COVID-19 and potentially lethal results. Actually, in addition to COVID-19, diabetic patients have been demonstrated to have abnormally high levels of inflammatory cytokines, increased virus entrance, and decreased immune response. On the other hand, during the severe stage of COVID-19, the SARS-CoV-2-infected patients have lymphopenia and inflammatory cytokine storms that cause damage to several body organs such as ß cells of the pancreas which may make them as future diabetic candidates. In this line, the nuclear factor kappa B (NF-κB) pathway, which is activated by a number of mediators, plays a substantial part in cytokine storms through various pathways. In this pathway, some polymorphisms also make the individuals more competent to diabetes via infection with SARS-CoV-2. On the other hand, during hospitalization of SARS-CoV-2-infected patients, the use of some drugs may unintentionally lead to diabetes in the future via increasing inflammation and stress oxidative. Thus, in this review, we will first explain why diabetic patients are more susceptible to COVID-19. Second, we will warn about a future global diabetes tsunami via the SARS-CoV-2 as one of its long-term complications.


Subject(s)
COVID-19 , Diabetes Mellitus , Humans , SARS-CoV-2 , Cytokine Release Syndrome , Inflammation , Cytokines
2.
J Diabetes Res ; 2023: 2587104, 2023.
Article in English | MEDLINE | ID: covidwho-2295483

ABSTRACT

Most medical investigations have found a reduced blood level of miR-146a in type 2 diabetes (T2D) patients, suggesting an important role for miR-146a (microRNA-146a) in the etiology of diabetes mellitus (DM) and its consequences. Furthermore, injection of miR-146a mimic has been confirmed to alleviate diabetes mellitus in diabetic animal models. In this line, deregulation of miR-146a expression has been linked to the progression of nephropathy, neuropathy, wound healing, olfactory dysfunction, cardiovascular disorders, and retinopathy in diabetic patients. In this review, besides a comprehensive review of the function of miR-146a in DM, we discussed new findings on type 1 (T1MD) and type 2 (T2DM) diabetes mellitus, highlighting the discrepancies between clinical and preclinical investigations and elucidating the biological pathways regulated through miR-146a in DM-affected tissues.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , MicroRNAs , Animals , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , MicroRNAs/metabolism , Humans
4.
Inflammopharmacology ; 31(1): 21-35, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2174586

ABSTRACT

Despite community vaccination against coronavirus disease 2019 (COVID-19) and reduced mortality, there are still challenges in treatment options for the disease. Due to the continuous mutation of SARS-CoV-2 virus and the emergence of new strains, diversity in the use of existing antiviral drugs to combat the epidemic has become a crucial therapeutic chance. As a broad-spectrum antiparasitic and antiviral drug, ivermectin has traditionally been used to treat many types of disease, including DNA and RNA viral infections. Even so, based on currently available data, it is still controversial that ivermectin can be used as one of the effective antiviral agents to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or not. The aim of this study was to provide comprehensive information on ivermectin, including its safety and efficacy, as well as its adverse effects in the treatment of COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Ivermectin/therapeutic use , Antiviral Agents/therapeutic use
5.
Hum Cell ; 35(5): 1338-1345, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2075702

ABSTRACT

Based on available evidence, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a neuroinvasive virus. According to the centers for disease control and prevention (CDC), coronavirus disease 2019 (COVID-19) may cause epilepsy. In this line, COVID-19 can stimulate hypoxia-inducible factor-1 alpha (HIF-1α) and activate P2X7 receptor. Both HIF-1α and P2X7 receptors are linked to epileptogenesis and seizures. Therefore, in the current study, we suggested that COVID-19 may have a role in epileptogenesis and seizure through HIF-1α stimulation and P2X7 receptor activation. Consequently, pharmacological targeting of these factors could be a promising therapeutic approach for such patients.


Subject(s)
COVID-19 , Epilepsy , Humans , Hypoxia-Inducible Factor 1 , Hypoxia-Inducible Factor 1, alpha Subunit , Receptors, Purinergic P2X7 , Risk Factors , SARS-CoV-2 , United States
6.
Inflammopharmacology ; 30(5): 1533-1539, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2000007

ABSTRACT

Hesperetin, an aglycone metabolite of hesperidin with high bioavailability, recently gained attention due to its anti-COVID-19 and anti-cancer properties. Multiple studies revealed that cancer patients are prone to experience a severe form of COVID-19 and higher mortality risk. In addition, studies suggested that COVID-19 can potentially lead to cancer progression through multiple mechanisms. This study proposes that hesperetin not only can be used as an anti-COVID-19 agent but also can reduce the risk of multiple cancer progression by suppressing several intracellular signaling pathways in cancer patients with COVID-19. Therefore, in this review, we attempted to provide evidence demonstrating anti-COVID-19/cancer properties of hesperetin with several mechanisms.


Subject(s)
COVID-19 Drug Treatment , Hesperidin , Neoplasms , Hesperidin/pharmacology , Hesperidin/therapeutic use , Humans , Neoplasms/drug therapy , SARS-CoV-2 , Signal Transduction
8.
Cell Mol Biol Lett ; 27(1): 37, 2022 May 13.
Article in English | MEDLINE | ID: covidwho-1846788

ABSTRACT

In nature, lectins are widely dispersed proteins that selectively recognize and bind to carbohydrates and glycoconjugates via reversible bonds at specific binding sites. Many viral diseases have been treated with lectins due to their wide range of structures, specificity for carbohydrates, and ability to bind carbohydrates. Through hemagglutination assays, these proteins can be detected interacting with various carbohydrates on the surface of cells and viral envelopes. This review discusses the most robust lectins and their rationally engineered versions, such as lectibodies, as antiviral proteins. Fusion of lectin and antibody's crystallizable fragment (Fc) of immunoglobulin G (IgG) produces a molecule called a "lectibody" that can act as a carbohydrate-targeting antibody. Lectibodies can not only bind to the surface glycoproteins via their lectins and neutralize and clear viruses or infected cells by viruses but also perform Fc-mediated antibody effector functions. These functions include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cell-mediated phagocytosis (ADCP). In addition to entering host cells, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein S1 binds to angiotensin-converting enzyme 2 (ACE2) and downregulates it and type I interferons in a way that may lead to lung disease. The SARS-CoV-2 spike protein S1 and human immunodeficiency virus (HIV) envelope are heavily glycosylated, which could make them a major target for developing vaccines, diagnostic tests, and therapeutic drugs. Lectibodies can lead to neutralization and clearance of viruses and cells infected by viruses by binding to glycans located on the envelope surface (e.g., the heavily glycosylated SARS-CoV-2 spike protein).


Subject(s)
SARS-CoV-2 , Antiviral Agents/pharmacology , Carbohydrates , Lectins/pharmacology , Spike Glycoprotein, Coronavirus
10.
Clin Mol Allergy ; 19(1): 21, 2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1506488

ABSTRACT

The concern of today's communities is to find a way to prevent or treat COVID-19 and reduce its symptoms in the patients. However, the genetic mutations and more resistant strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerge; the designed vaccines and adjuvant therapies would potentially control the symptoms and severity of COVID-19. The most important complication of this viral infection is acute respiratory distress syndrome, which occurs due to the infiltration of leukocytes into the alveoli and the raised cytokine storm. Interferons, as a cytokine family in the host, play an important role in the immune-related antiviral defense and have been considered in the treatment protocols of COVID-19. In addition, it has been indicated that some nutrients, including vitamin D, magnesium and zinc are essential in the modulation of the immune system and interferon (IFN) signaling pathway. Several recent studies have investigated the treatment effect of vitamin D on COVID-19 and reported the association between optimal levels of this vitamin and reduced disease risk. In the present study, the synergistic action of vitamin D, magnesium and zinc in IFN signaling is discussed as a treatment option for COVID-19 involvement.

11.
Int Immunopharmacol ; 97: 107828, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1253058

ABSTRACT

In various pathological conditions, cellular immunity plays an important role in immune responses. Amongimmunecells, T lymphocytes pdomotecellular and humoralresponses as well as innate immunity. Therefore, careful investigation of these cells has a significant impact on accurate knowledge in COVID-19diseasepathogenesis. In current research, the frequency and function of various T lymphocytes involved in immune responses examined in SARS-CoV-2 patients with various disease severity compared to normal subjects. In order to make an accurate comparison among patients with various disease severity, this study was performed on asymptomatic recovered cases (n = 20), ICU hospitalized patients (n = 30), non-ICU hospitalized patients (n = 30), and normal subjects (n = 20). To precisely evaluate T cells activity following purification, their cytokine secretion activity was examined. Similarly, immediately after purification of Treg cells, their inhibitory activity on T cells was investigated. The results showed that COVID-19 patients with severe disease (ICU hospitalized patients) not only had a remarkable increase in Th1 and Th17 but also a considerable decrease in Th2 and Treg cells. More importantly, as the IL-17 and IFN-γ secretion was sharply increased in severe disease, the secretion of IL-10 and IL-4 was decreased. Furthermore, the inhibitory activity of Treg cells was reduced in severe disease patients in comparison to other groups. In severe COVID-19 disease, current findings indicate when the inflammatory arm of cellular immunity is significantly increased, a considerable reduction in anti-inflammatory and regulatory arm occurred.


Subject(s)
COVID-19/blood , COVID-19/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/virology , Adult , Aged , Cytokines/immunology , Cytokines/metabolism , Female , Healthy Volunteers , Humans , Immunity, Cellular , Inflammation/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-17/metabolism , Interleukin-4/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Male , Middle Aged , Severity of Illness Index , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Young Adult
12.
Biol Proced Online ; 23(1): 8, 2021 Feb 22.
Article in English | MEDLINE | ID: covidwho-1097186

ABSTRACT

The proteostasis network includes all the factors that control the function of proteins in their native state and minimize their non-functional or harmful reactions. The molecular chaperones, the important mediator in the proteostasis network can be considered as any protein that contributes to proper folding and assembly of other macromolecules, through maturating of unfolded or partially folded macromolecules, refolding of stress-denatured proteins, and modifying oligomeric assembly, otherwise it leads to their proteolytic degradation. Viruses that use the hosts' gene expression tools and protein synthesis apparatus to survive and replicate, are obviously protected by such a host chaperone system. This means that many viruses use members of the hosts' chaperoning system to infect the target cells, replicate, and spread. During viral infection, increase in endoplasmic reticulum (ER) stress due to high expression of viral proteins enhances the level of heat shock proteins (HSPs) and induces cell apoptosis or necrosis. Indeed, evidence suggests that ER stress and the induction of unfolded protein response (UPR) may be a major aspect of the corona-host virus interaction. In addition, several clinical reports have confirmed the autoimmune phenomena in COVID-19-patients, and a strong association between this autoimmunity and severe SARS-CoV-2 infection. Part of such autoimmunity is due to shared epitopes among the virus and host. This article reviews the proteostasis network and its relationship to the immune system in SARS-CoV-2 infection.

13.
Expert Rev Anti Infect Ther ; 19(7): 899-910, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-975159

ABSTRACT

Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a potentially fatal agent for a new emerging viral disease (COVID-19) is of great global public health emergency. Herein, we represented potential antibody-based treatments especially monoclonal antibodies (mAbs) that may exert a potential role in treatment as well as developing vaccination strategies against COVID-19.Areas covered: We used PubMed, Google Scholar, and clinicaltrials.gov search strategies for relevant papers. We demonstrated some agents with potentially favorable efficacy as well as favorable safety. Several therapies are under assessment to evaluate their efficacy and safety for COVID19. However, the development of different strategies such as SARS-CoV-2-based vaccines and antibody therapy are urgently required beside other effective therapies such as plasma, anticoagulants, and immune as well as antiviral therapies. We encourage giving more attention to antibody-based treatments as an immediate strategy. Although there has not been any approved specific vaccine until now, developing vaccination strategies may have a protective effect against COVID-19.Expert opinion: An antiviral mAbs could be a safe and high-quality therapeutic intervention which is greatly recommended for COVID-19. Additionally, the high sequence homology between the SARS-CoV-2 and SARS/MERS viruses could shed light on developing to design a vaccine against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/immunology , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/immunology , COVID-19/immunology , Humans , Vaccination
14.
Biol Proced Online ; 22: 19, 2020.
Article in English | MEDLINE | ID: covidwho-853184

ABSTRACT

In December 2019, a novel coronavirus, named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) or (2019-nCoV) with unknown origin spread in Hubei province of China. The epidemic disease caused by SARS-CoV-2 called coronavirus disease-19 (COVID-19). The presence of COVID-19 was manifested by several symptoms, ranging from asymptomatic/mild symptoms to severe illness and death. The viral infection expanded internationally and WHO announced a Public Health Emergency of International Concern. To quickly diagnose and control such a highly infectious disease, suspicious individuals were isolated and diagnostic/treatment procedures were developed through patients' epidemiological and clinical data. Early in the COVID-19 outbreak, WHO invited hundreds of researchers from around the world to develop a rapid quality diagnosis, treatment and vaccines, but so far no specific antiviral treatment or vaccine has been approved by the FDA. At present, COVID-19 is managed by available antiviral drugs to improve the symptoms, and in severe cases, supportive care including oxygen and mechanical ventilation is used for infected patients. However, due to the worldwide spread of the virus, COVID-19 has become a serious concern in the medical community. According to the current data of WHO, the number of infected and dead cases has increased to 8,708,008 and 461,715, respectively (Dec 2019 -June 2020). Given the high mortality rate and economic damage to various communities to date, great efforts must be made to produce successful drugs and vaccines against 2019-nCoV infection. For this reason, first of all, the characteristics of the virus, its pathogenicity, and its infectious pathways must be well known. Thus, the main purpose of this review is to provide an overview of this epidemic disease based on the current evidence.

SELECTION OF CITATIONS
SEARCH DETAIL